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1. INTRODUCTION

Firms are increasingly adopting software algorithms to price their goods and services.

In a sample of over 1,600 best-selling items listed on Amazon, Chen et al. (2016) find

that in 2015 more than a third of the vendors had already automated their pricing.

Large firms often develop their own programs in-house, but a repricing-software

industry has arisen, supplying turnkey pricing systems to smaller vendors.1 As this

industry is developing steadily, algorithmic pricing is likely to become even more

prevalent in the future.

Actually, algorithmic pricing is not entirely new: airline companies, for instance,

have been using revenue management software for decades now. But this software

would set prices mechanically following the instructions of the programmer, who

thus remains effectively in charge of the strategic choices.2 The new vintage of pric-

ing algorithms now emerging is radically different. Powered by Artificial Intelligence,

these algorithms are much more “autonomous” than their precursors. They develop

their pricing strategies from scratch, engaging in active experimentation and adapt-

ing to the evolving environment. In this learning process, they require little or no

external guidance.

These developments raise various issues for competition policy. In particular, le-

gal scholars and policy-makers alike have voiced concern that algorithmic pricing

may facilitate tacit collusion.3 While economic theory would not appear to lend

unambiguous support to this thesis,4 antitrust agencies are discussing the problem

1https://www.techemergence.com/ai-for-pricing-comparing-5-current-applications/ last ac-
cessed October 4, 2018. Algorithmic pricing is now so widely diffused that Amazon advertises
its MarketPlace WebService API stressing that the API facilitates pricing automation. See
https://developer.amazonservices.com/, last accessed October 4, 2018.

2Revenue management software typically comprises an estimation module and an optimization
module. The estimation module estimates a structural model of the industry (which is often taken
to be a monopoly, however, abstracting from strategic interactions). The optimization module then
calculates the optimal prices.

3See, for instance, Ezrachi and Stucke (2016, 2017), the remarks of M. Vestager, European
Commissioner, at the Bundeskarellamt 18th Conference on Competition, Berlin, March 16, 2017
(“Algorithms and Competition”), and the speech of M. Ohlhausen, Acting Chairman of the FTC
, at the Concurrences Antitrust in the Financial Sector Conference, New York, May 23, 2017
(“Should We Fear the Things That Go Beep in the Night? Some Initial Thoughts on the Intersection
of Antitrust Law and Algorithmic Pricing”).

4Salcedo (2015) shows theoretically that optimized algorithms will inevitably reach a collusive
outcome, but this requires that each algorithm periodically “decode” the others, which in the
meantime have not changed. Such an assumption is somewhat far-fetched, so the practical relevance
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seriously.5

To inform this policy debate, this paper takes an experimental approach. We con-

struct Artificial Intelligence pricing agents and let them interact repeatedly in con-

trolled environments (computer-simulated marketplaces). The results indicate that

even relatively simple pricing algorithms systematically learn to play sophisticated

collusive strategies. The strategies involve punishments that are proportional to the

extent of the deviations and are finite in duration, with a gradual return to the

pre-deviation prices. The algorithms learn these strategies purely by trial and er-

ror. They are not designed or instructed to collude, they do not communicate with

one another, and they have no prior knowledge of the environment in which they

operate.

To our knowledge, this is the first paper that clearly documents the emergence of

collusive strategies among pricing algorithms. The previous literature in both com-

puter science and economics has focused more on outcomes than strategies. But the

observation of supra-competitive prices is not, per se, genuine proof of collusion, as

high prices could be due to the algorithms’ failure to learn the competitive equilib-

rium.6 If this were so, there would be little ground for concern, in that the problem

would presumably fade away as Artificial Intelligence developed further. If instead

pricing algorithms even now can learn to collude, then with the spread of “smarter”

programs the problem is likely, if anything, to worsen.

Our analysis not only shows that pricing algorithms do learn to collude but further

suggests they may actually be better than humans at colluding tacitly. The exper-

of the result remains controversial.
5Most recently, the seventh session of the FTC Hearings on competition and consumer protection,

November 13-14, 2018, centered on the “impact of algorithms and Artificial Intelligence.” In fact,
agencies have been actively engaged on the issue for a couple of years now. For example, the OECD
sponsored a Roundtable on Algorithms and Collusion in June 2017, and in September 2017 the
Canadian Competition Bureau released a discussion paper on the ability of algorithms to collude as
a major question for antitrust enforcement (Big data and Innovation: Implications for Competition
Policy in Canada). Lastly, the British CMA published a white paper on Pricing Algorithms on
October 8, 2018.

6For example, Waltman and Kaymak (2008) study repeated Cournot competition among Q-
algorithms both where the algorithms cannot condition current choices on past actions (where tacit
collusion is by definition impossible) and where they can (where collusion becomes a possibility).
They find that the extent to which firms manage to reduce output with respect to the Cournot-
Nash static equilibrium “seems to be somewhat lower for firms with a memory [...] than for firms
without a memory.” (p. 3283) This suggests, however, that what they observe is not collusion but
a failure to learn Nash.
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imental literature has consistently found that human subjects are hardly able to

coordinate without explicit communication. In a laboratory setting with no com-

munication possible two agents sometimes manage to converge to slightly supra-

competitive prices, but three agents typically set prices close to the static Nash

equilibrium, and four or more actually tend to be more aggressive than Nash – a

“rivalry” effect that is often attributed to experimental subjects’ tendency to be-

have as if they were involved in a contest.7 Our algorithms, by contrast, display a

stubborn propensity to collude. Even though, in keeping with theory, the degree of

collusion decreases as the number of competitors rises, substantial collusion contin-

ues to prevail when the active firms are three or four in number, when they are

asymmetric, and when they operate in stochastic environments.

These results would appear to suggest that current policy on tacit collusion may

no longer be adequate in the age of Artificial Intelligence (AI). In most countries

(including the U.S. and Europe), tacit collusion is not now regarded as illegal.8

The rationale is twofold. First, tacit collusion is held to be a chimera: illusory and

practically impossible to achieve. And second, the position is that even if tacit

collusion nevertheless occurred, it would be hard to detect. These assumptions imply

that aggressive antitrust enforcement risks producing many false positives, while

tolerant policy would result in relatively few false negatives. Our findings, however,

suggest that the advent of AI pricing could well alter the balance between the two

types of errors. More research is certainly needed before policy conclusions can be

drawn, but there is good reason to hold that the issue deserves closer scrutiny.

The rest of the paper is organized as follows. The next section provides a self-

contained description of the class of “Q-learning”algorithms, which we use in our

simulations. These are relatively simple Reinforcement Learning algorithms with a

finite state and action space, but the more sophisticated algorithms that have been

developed recently in computer science share the same basic architecture. Section

3 reviews the related economics and computer science literature. Section 4 then

gives a detailed description of the economic environments where the simulations are

performed. Section 5 reports the main results, and Section 6 reports on a number of

7See for instance Huck et al. (2004) and the literature cited therein.
8In fact, the treatment of tacit collusion has long been one of the most controversial issues in

competition policy, and although the prevalent approach is tolerant, some jurisdictions take a more
aggressive stance.
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robustness checks. Section 7 concludes with a discussion of some major open issues.

2. Q-LEARNING: A PRIMER

Artificial Intelligence is largely based on Reinforcement Learning (RL) algorithms.

Such algorithms have a structure that naturally appeals to economists: they adapt

their behavior to past experience, taking actions that have proven successful more

frequently and unsuccessful ones less frequently.9 In this way, the algorithms may

learn an optimal policy, or a policy that approximates the optimum, with little or

no prior knowledge of the particular problem at hand.

Within the set of Reinforcement Learning models, a highly popular class among

computer scientists is Q-learning algorithms. These are designed expressly to max-

imize the present value of a flow of rewards in problems of repeated choice. In

non-strategic, stationary settings, under mild regularity conditions, they are certain

to eventually deliver the optimal policy. In strategic settings, they form the basis for

the software that has recently obtained spectacular successes, achieving superhuman

performances, in games such as Go,10 the Atari video-games,11 and, lastly, chess.12

2.1. Single-agent problems

Q-learning was originally proposed by Watkins (1989) to tackle Markov decision

processes.13 In a Markov decision process, in each period t = 0, 1, 2, ... an agent

observes a state variable st ∈ S and then chooses an action at ∈ A(st). For any

st and at, the agent obtains a reward πt, and the system moves on to the next

state st+1, according to a (time invariant) probability distribution F (πt, st+1|st, at).
In the simplest settings, the distribution may be degenerate, so πt and st+1 become

deterministic functions of st and at.

The decision maker’s problem is to maximize the expected present value of the

9For a comprehensive discussions of Reinforcement Learning in the computer science literature,
see Sutton and Barto (2018). Erev and Roth (1995) is one of the first applications to economics.

10See Silver et al. (2017).
11See Mnih et al. (2015).
12See https://thenewstack.io/deepminds-new-milestones-on-the-road-to-artificial-general-

intelligence/, last accessed December 17, 2018.
13The reader is referred to Sutton and Barto (2018) for an in-depth discussion.
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reward stream:

(1) E

[
∞∑
t=0

δtπt

]
,

where δ < 1 represents the discount factor. This dynamic programming problem is

usually attacked by means of Bellman’s value function

(2) V (s) = max
a∈A
{E [π|s, a] + δE[V (s′)|s, a]} ,

where s′ is a shorthand for st+1. For our purposes it is convenient to consider instead

a precursor of the value function, namely the Q-function representing the cumulative

discounted payoff of taking action a in state s.14 It is implicitly defined as:

(3) Q(s, a) = E(π|s, a) + δE[max
a′∈A

Q(s′, a′)|s, a].

The Q-function is related to the value function by the simple identity V (s) ≡
maxa∈AQ(s, a). If the agent knew the Q-function, he could then calculate the opti-

mal action for any given state, i.e. the optimal strategy.

2.1.1. Estimating the Q-matrix

Q-learning is essentially a method for estimating the Q-function without knowing the

underlying model, i.e. the distribution function F (π, s′|s, a). This task is performed

under the assumption that S and A are finite, and that A is not state-dependent.

On these assumptions, the Q-function becomes an |S| × |A| matrix.

Q-learning algorithms estimate this matrix by an iterative procedure. Starting from

an arbitrary initial matrix Q0, after choosing action at in state st, the algorithm

observes πt and st+1 and updates the corresponding cell of the matrix Qt(s, a) for

s = st, a = at, according to the learning equation:

(4) Qt+1(s, a) = (1− α)Qt(s, a) + α

[
πt + δmax

a∈A
Qt(s

′, a)

]
.

For all other cells s 6= st and a 6= at, the Q-value does not change: Qt+1(s, a) =

14The term Q-function derives from the fact that the Q-value can be thought of as an index of
the “Quality”of action a in state s.
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Qt(s, a). Equation (4) tells us that for the cell visited the new value Qt+1(s, a) is a

convex combination of the previous value and the current reward plus the discounted

value of the state that is reached next. The weight α ∈ [0, 1] is called the learning

rate.

If the iterative process converges to the true Q-matrix, the algorithm will learn

the optimal policy a(s) = arg max[Q(s, a)] with absolutely no prior knowledge of

the function F (π, s′|s, a). If there is to be a chance of really approximating the

true matrix, however, all actions must be tried in all states. This means that the

algorithm has to be instructed to experiment, i.e. to gather new information by

selecting actions that may appear sub-optimal in the light of the knowledge acquired

in the past.

Plainly, such experimentation is costly and thus entails a trade-off. The benefit of

exploration is better learning, which in turn improves future decisions. The downside

is that by picking an action randomly instead of choosing the one with the largest

current Q-value, the algorithm does not fully exploit its stock of acquired knowledge.

Finding the optimal resolution to this trade-off is problematic. In the economic the-

ory of optimal experimentation, progress has been made only in simplified settings

(see e.g. Bergeman and Valimaki, 2006). For frameworks as general as those consid-

ered here, we do not yet know what an optimal exploration policy might look like.

At any rate, Q-learning algorithms do not even try to optimize in this respect: the

mode and intensity of the exploration are specified exogenously.

The simplest possible exploration policy – sometimes called the ε-greedy model

of exploration – is to choose the currently optimal action (i.e., the one with the

highest Q-value in the relevant state, also known as the “greedy” action) with a fixed

probability ε and to randomize uniformly across all other actions with probability

1 − ε. Thus, ε is the fraction of times the algorithm is in exploitation mode, while

1−ε is the fraction of times it is in exploration mode. More sophisticated exploration

policies can also be designed: for example, one may let the probability ε vary over

time, as we do in what follows, or let the probability with which sub-optimal actions

are tried depend on their respective Q-values.15

15For example, in the so-called Boltzman experimentation model actions are chosen with prob-
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2.2. Convergence

One reason Q-learning is so popular is that for this model convergence to the optimal

policy is guaranteed under quite general conditions (see Dayan and Watkins, 1992).

It requires only that the algorithm’s exploration policy belong to a class known

as Greedy in the Limit with Infinite Exploration (GLIE). Loosely speaking, these

policies satisfy three intuitive requirements: that exploration decrease over time; that

if a state is visited infinitely often, the probability of choosing any feasible action in

that state be always positive (albeit arbitrarily small); and that the probability of

choosing the greedy action go to one as t→∞.

Under these conditions, convergence is always achieved, but completing the learning

process may take quite a long time. Q-learning is slow because it updates only one

cell of the Q-matrix at a time, and approximating the true matrix generally requires

that each cell be visited many times. The larger the state or action space, the more

iterations will be needed.

2.3. Q-learning in repeated games

Although Q-learning was originally designed to deal with Markov decision processes,

it can also be applied to repeated games. In this case, however, stationarity is in-

evitably lost even if the stage game does not change from one period to the next.

One source of non-stationarity is that in repeated games with perfect information,

where strategies consist of mappings from the history of past play to the set of

actions, the state st must be defined so as to include players’ actions in previous

periods. But if the actions of all previous periods are included, the set of states

increases exponentially with time.16

This problem can be fixed by bounding players’ memory. With bounded recall, a

abilities

Pr(at = a) =
eQt(st,a)/τ∑

a′∈A
eQt(st,a′)/τ

where the parameter τ is often called the system’s “temperature.” As long as τ > 0, all actions
are chosen with positive probability. When τ = 0, however, the algorithm chooses the action with
the highest Q-value with probability 1, and thus ceases to experiment.

16Furthermore, there would be no hope of visiting the same state twice.
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state s will include only the actions chosen in the last k stages, implying that the

state space may be finite and time-invariant.

A more serious problem is that in repeated games the per-period payoff and the tran-

sition to the next state generally depend on the actions of all the players. If player i’s

rivals change their actions over time – because they are experimenting or learning,

or both – player i’s optimization problem becomes inherently non-stationary.

Such non-stationarity is the ultimate reason why there are no general convergence

results for Q-learning in repeated games. That is, there is no guarantee that several

Q-learning algorithms interacting in the same environment will learn an optimal

policy (that is, collectively, a Nash equilibrium of the repeated game with bounded

memory). Convergence and equilibrium play can be verified ex-post, however, as we

shall do in what follows.

Note that even if the algorithms are playing a game, they may continue to learn in a

non-strategic way. That is, algorithm i regards its rivals as part of the environment

and continues to update its Q-matrix according to (4). It does not have to be aware

that it is interacting strategically with other players: from its standpoint, the past

actions of rivals are treated just like any other possibly relevant state variable. In

the computer science literature, this approach to Q-learning in repeated games is

called independent learning. This is the approach we use in our experiments.

2.4. Beyond Q-learning

These simple Q-learning algorithms, which we use in our simulations, are adopted

widely in computer science and indeed form the basis of the most recent develop-

ments in the field. Such algorithms have two significant drawbacks, however. First,

they are unable to deal with continuous state and action spaces. The spaces must be

discretized, and the finer the discretization, the slower the learning. Second, the algo-

rithms do not realize that they are playing a game, so their learning is non-strategic.

The recent computer science literature has tried to address these problems.

2.4.1. Deep learning

With continuous state and action spaces, the Q-matrix becomes a smooth function.

Deep learning algorithms estimate this function by means of iterative methods sim-
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ilar in spirit to (4). When the state and action spaces are finite but large, a smooth

approximation of the Q-matrix may also serve to speed up the learning process. In

this case, at each period a deep learning algorithm would update not only the last

cell of the matrix that has been visited but also a number of neighboring cells.

Deep learning has long suffered from failures to achieve convergence, but significant

progress on this front has been made recently. For example, in 2015 Google patented

a new method for updating the Q-function that has proved quite successful (even

if theoretical proof of convergence is still lacking). Loosely speaking, the method

uncouples the updating of the two Q-functions that appear on the right-hand side

of (4). This is the method that has enabled the algorithms to attain superhuman

performance in the complex strategic tasks mentioned above.

2.4.2. Joint learning

Independent learning implies that the competing algorithms do not realize they are

playing a game. In computer science, this issue has been addressed in the so-called

joint learning literature. A number of different approaches have been proposed. For

example, with equilibrium-based joint learning, other players’ actions are predicted

by means of some sort of equilibrium notion.17

Generally speaking, joint learning faces three main challenges: (i) the observabil-

ity of rivals’ payoffs, necessary in order to anticipate their behavior but much more

demanding, as a requirement, than the observability of actions; (ii) a curse of dimen-

sionality, which emerges because tracing rivals’ optimization increases the amount of

information that each algorithm has to store and process; and (iii) the treatment of

multiple equilibria: when different algorithms focus on different equilibria, problems

of mis-coordination can arise.18

2.4.3. State of the art

The computer science literature has not yet developed a consensus approach to joint

learning. And the more sophisticated “reasoning” of which joint-learning algorithms

are capable does not seem to offset the advantage of independent learning in terms

17Different notions of equilibrium may be used: for example, Hu and Wellman (1998) use the
Nash equilibrium, Greenwald and Hall (2003) the correlated equilibrium.

18Shoham et al. (2007) provide an excellent survey of these methods and their limits.
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of lower dimensionality. In fact, the most spectacular successes in complex multi-

agent environments have come through independent-learning algorithms (e.g. Silver

et al. 2016, 2017, Tampuu et al. 2017).19

The deep learning approach, by contrast, seems both more settled and more promis-

ing. While the best way to guarantee convergence is still an unsettled question, con-

siderable progress has unquestionably been made. Deep learning is currently being

applied to the most diverse strategic settings, and there is little doubt that it will

have a major impact on pricing software as well.

Nevertheless, here we have chosen to focus on simple, “tabular” Q-learning algo-

rithms. In addition to being well understood, these simple algorithms can keep

possibly arbitrary modeling choices to a minimum. In fact, our algorithms are fully

described by just two parameters, the learning rate α and an experimentation pa-

rameter β, which will be defined precisely in a moment. This allows us to con-

duct extensive comparative statics with respect to the structure of the algorithms.

More sophisticated algorithms have a more complex architecture requiring further

parametrization.20

The downside of such relatively simple AI technology is the slowness of learning,

but our research strategy focuses on the behavior of the algorithms once they have

completed the training process. This “off-line” approach (i.e. with agents learning

off the market) would appear to be legitimate as long as the economic environment

is stationary, in that the algorithms may then be trained off-line before being put

to work (as is often the case in real life).

In non-stationary environments, of course, the issue is more delicate. As is discussed

in greater detail in the concluding section, in this case it seems likely that some

learning must take place also on-line (i.e. with actual market play). The speed

of learning then becomes important. Here, deep learning algorithms would appear

today to be the elective choice. Extending our experiments to this framework is

therefore an important task for future research.21

19Perhaps for these reasons, today’s most popular software libraries, such as Google TRFL, do
not include joint-learning algorithms.

20For example, with deep learning algorithms, in addition to the learning and experimentation
parameters one must specify a functional form for the Q-function, the number of estimation layers,
and the structure of the neural network in each layer.

21It should be noted, though, that the spectacular successes cited in Section 2 rely on off-line
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3. THE LITERATURE

A number of papers have analyzed how Q-learning algorithms perform in oligopolies,

competing either against fixed-strategy opponents or against other Q-learners. In the

former case, theory predicts that the algorithms will learn to play a best response,

and this is what the literature in fact finds. The latter case, on which we focus in

what follows, is more interesting.

Before proceeding, it must be said that so far this literature has been dominated by

computer scientists, who naturally pursue their own research agenda. As a result, the

primary focus has been on algorithms’ performance in terms of ability to converge,

speed of convergence, and payoff. Relatively few studies have addressed the issue of

whether Q-learning algorithms can learn to collude, and none provides clear evidence

on this question.

3.1. Staggered prices

One group of studies specifically analyzes pricing games. To the best of our knowl-

edge, all these papers consider a model of staggered pricing where firms commit to a

price level for two periods, as in Maskin and Tirole (1988). Like Maskin and Tirole,

these papers posit Markov behavior, meaning that a firm can condition its price

only on rivals’ current prices and not on past history (including its own previous

prices).

In this setting, several works have found supra-competitive prices, at least to some

extent. Sometimes, however, either the models or the findings exhibit anomalies

that raise doubts about the interpretation of the results. For example, the demand

function posited by Greenwald et al. (1999) and Tesauro and Kephart (2002) for the

case of differentiated products is quite special. In addition, both these studies find

that the more efficient firm makes lower profits than its less efficient competitor.

As another example, Kononen (2006) finds that prices are already substantially

supra-competitive when δ = 0 (a case in which firms should effectively be playing

a one-shot game) and do not increase significantly with the discount factor δ. One

wonders whether this may be evidence not so much of collusion as of a failure to

learning as we do here, and it is likely that repricing algorithms currently available in the market
rely on the same approach.
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learn the optimal strategy.

The best paper along these lines is perhaps Klein (2018), which considers Maskin

and Tirole’s baseline example with homogeneous products and linear demand. In

accordance with theory, he finds that two Q-learning algorithms converge either to a

constant price or to a pattern that resembles an Edgeworth cycle. In his baseline case

with 6 possible price levels, profits are roughly midway between the static Bertrand-

Nash level and the collusive level: in the terminology of this paper, the average

profit gain22 is around 50%. Enlarging the set of actions to 12 or 100 possible prices

increases the average profit gain and makes it much more likely that the algorithms

will converge to an Edgeworth cycle rather than a constant price.

These results are interesting and in broad agreement with our own findings. However,

the postulate of price commitment is controversial, especially given that software

algorithms can adjust prices very quickly. The assumption is probably consequential,

as both theory and experimental evidence suggest that commitment may facilitate

coordination. In point of theory, Maskin and Tirole (1988) have shown that the set

of equilibrium profits that can be supported given commitment is bounded away

from the static, one-shot level of profit. By contrast, the folk theorem for repeated

games says that there exist subgame perfect equilibria in which profits are lower than

in the static equilibrium. As for the experimental evidence, Leufkens and Peeters

(2011) have shown that in a model of staggered prices, substantial cooperation is

easily attained even among human subjects. In fact, as Klein recognizes, Q-learning

algorithms appear to achieve less cooperation than humans in similar settings. And

in any event Klein does not analyze the strategies that support these collusive-

seeming outcomes.

We differ from this literature in using the canonical model of collusion, i.e. an in-

finitely repeated Bertrand game in which all firms act simultaneously and condition

their actions on past history. We depart from the canonical model only in assuming

a bounded memory, for the reasons explained in the previous section. Also, we make

an explicit analysis of the punishment strategies that sustain the collusive outcomes

we observe. It turns out that these strategies hinge on the possibility of conditioning

one’s current price not only on competitors’ but also on one’s own past prices.

22For a formal definition, see equation (9) below.
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3.2. Cournot competition

Another group of papers, including most notably Waltman and Kaymak (2008),

has studied repeated Cournot games. Here all players act simultaneously and have

bounded recall, as in our model. They, too, find outcomes that are far from fully

competitive: specifically, the average profit gain in their experiment is around 60%.

In principle, the only difference with respect to our analysis is that the stage game

is one of strategic substitutes rather than complements. It is not clear, a priori,

whether this impedes or facilitates collusion. But in practice Waltman and Kay-

mak’s findings do not seem to be based on equilibrium behavior. As noted above,

they find less competitive outcomes when firms are myopic and have no memory –

conditions under which collusion is either unfeasible or cannot emerge in equilibrium

– than when they are more far-sighted and can condition current on past prices. This

suggests that what Waltman and Kaymak actually find is a failure to learn to play

Nash.

3.3. Repeated prisoner dilemma

When the action space is reduced to two feasible actions, both Bertrand and Cournot

games collapse to some sort of prisoner dilemma. There is a substantial literature on

Q-learning in the repeated prisoner dilemma, and we have also conducted extensive

experimentation with this model. In a companion paper (Calvano et al., 2018), we

survey the relevant literature and report our own results.

For our current purposes, suffice it here to say that the literature sometimes finds

a significant amount of cooperation. But the prisoner dilemma is a special type of

stage game, in that there is only one way to cooperate. It is often argued that tacit

collusion is hard to achieve in practice because there are many supra-competitive

prices, and players may find it difficult to coordinate in the absence of explicit com-

munication.23 Analyses based on the prisoner dilemma cannot address this concern.

That is, even if Q-learning algorithms managed to cooperate in the repeated pris-

oner dilemma, this would not constitute conclusive evidence that they can learn to

collude in more realistic settings.

23Khun and Tadelis (2018).
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3.4. Other literature

Our analysis also relates to the economic literatures on market experimentation, on

learning in games, and on evolutionary game theory. The main difference from the

market experimentation literature (see Bergeman and Valimaki (2006) for a survey)

is that Q-learning algorithms take the exploration policy as exogenously given and

do not experiment optimally. As for the theory of learning in games (see Fudenberg

and Levine (2016) and Dal Bò and Frechette (2018) for excellent recent surveys),

the theory has considered models of Reinforcement Learning but mostly for passive

learning, not active experimentation.24

Some scholars have also noted the analogy between Q-learning and evolutionary

game theory,25 in that both approaches study some sort of adaptive behavior. How-

ever, the evolutionary approach assumes that each agent follows a fixed strategy, and

“learning” is through a replicatory dynamics that propagates the best-performing

strategies. Our algorithms, by contrast, learn actively, exploring the environment

and adapting their own behavior to take advantage of past experience.

4. EXPERIMENT DESIGN

We construct a number of Q-learning algorithms and let them interact in a repeated

Bertrand oligopoly setting. Here we describe the environment in which the algo-

rithms operate, the exploration strategy they follow, and the criterion we apply to

end each computer simulation.

24In particular, this literature examines the ability of Reinforcement Learning models to replicate
the experimental behavior of human subjects (see e.g. Erev and Roth (1995, 1998, 2014) and Ho
et al. (2007)). The working hypothesis is that a good part of the difference between behavior in
the laboratory and the model of the perfectly rational Homo Oeconomicus stems from learning.
This is undoubtedly a promising approach, but our own focus is on markets in which prices are
set by algorithms rather than human beings.

25See for instance Tuyls et al. (2006).
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4.1. Economic environment

Our workhorse is a standard model of price competition with logit demand and

constant marginal costs. In each period t, the demand for product i = 1, 2, ..., n is:

(5) qit =
e
ai−pit
µ∑n

j=1 e
aj−pjt

µ + e
a0
µ

.

The parameters ai may be taken as product quality indexes, which as such capture

vertical differentiation, whereas µ is an index of horizontal differentiation. Product

0 is an outside good, so a0 is an inverse index of aggregate demand.

Each product is supplied by a different firm, so n is also the number of firms. The

per-period reward accruing to firm i is then πit = (pit−ci)qit, where ci is the marginal

cost. As usual, fixed costs are irrelevant as long as firms stay active.

We use the logit model because it has been widely applied in empirical work for its

flexibility. As noted, it accommodates both vertical and horizontal differentiation,

and it can also easily accommodate the case of stochastic demand. As a robustness

check, however, we also considered the case of linear demand functions derived by

quadratic preferences à la Singh and Vives (1984).

Although this benchmark model is deterministic, we also investigated stochastic

demand and stochastic entry and exit.

4.1.1. Discretization of the action space

In a Bertrand game, the algorithms choose prices. Since Q-learning requires a finite

action space, we discretize the model as follows. For each value of the parameters,

we compute both the Bertrand-Nash equilibrium of the one-shot game and the

monopoly prices (i.e., those that maximize aggregate profits). These are denoted by

pN and pM , respectively. Then, we take the set A of the feasible prices to be given

by m equally spaced points in the interval [(1− ξ)pN , (1 + ξ)pM ], where ξ > 0 is a

parameter. For example, in our baseline specification we set ξ = 0.1, so prices range

from 10% below Bertrand to 10% above monopoly.26

26As a robustness check, we have tried values of ξ large enough that the price interval also
includes the unit costs. This turns out to be immaterial, as in fact observed prices are generally
higher than Bertrand and lower than monopoly.
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Our way of discretizing the strategy space implies that the exact Bertrand and

monopoly prices may not be feasible, so there may be mixed-strategy equilibria both

in the stage and in the repeated game. Since by design our algorithms generically

end up playing pure strategies, they might then cycle around a “target” that is not

feasible.

4.1.2. Memory

To ensure that the state space is finite, we posit a bounded memory. Specifically,

the state is defined simply as the set of all past prices in the last k periods:

(6) st = {pt−1, ...,pt−k} ,

where k is the length of the memory. The assumption here is perfect monitoring,

which is reasonable for markets where algorithmic pricing tends to be used. In these

markets, prices are typically posted on the Internet and so are easily observed by

competitors.27

Our assumptions imply that for each player i we have |A| = m and |S| = mnk.

4.2. Algorithm settings

As is pointed out in Section 2, given the set of states S and the set of actions A, a

Q-learning algorithm is fully specified by the learning rate α , the discount factor δ,

and an exploration strategy.

4.2.1. Exploration

We use one of the simplest exploration policies in the GLIE class, namely, an ε-

greedy model with a time-declining exploration rate. More specifically, we set

(7) εt = 1− e−βt,

where β > 0 is a parameter. This means that initially the algorithms choose in

purely random fashion, but as time passes they make the greedy choice more and

27For example, the Amazon.com API allows sellers to recover current and past prices of any
product with a simple query.
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more frequently. The greater β, the faster exploration fades away.

4.2.2. Initialization

Q-learning algorithms may well start with a clean slate, such as Q0 = 0. However,

to speed up the learning process the initial Q-matrices may be set in accordance

with certain hypotheses. For example, our baseline choice is to set Qi,0(s, a) at the

discounted payoff that would accrue to player i if opponents randomized uniformly:

(8) Qi,0(s, ai) =

∑
a−i∈An−1

πi(s, ai, a−i)

(1− δ)
∏
j 6=i
|Aj|

.

This is in keeping with our assumption that at first the choices are purely random.

In a similar spirit, the initial state s0 is drawn randomly at the beginning of each

session.

However, we have run robustness checks with alternative initializations, correspond-

ing to rivals playing, say, the static Bertrand-Nash equilibrium. With enough explo-

ration, the results are insensitive to the way the matrix is initialized.

4.3. Convergence

As mentioned, for non-stationary problems like ours there are no general convergence

results: we do not know whether the algorithms converge at all or, if they do, whether

they converge to a Nash equilibrium.

But convergence can be verified in practice. We use the following criterion: con-

vergence is deemed to be achieved if for each player the optimal strategy does not

change for 25,000 consecutive periods. That is, if for each player i and each state

s the action ai,t(s) = arg max [Qi,t(a, s)] stays constant for 25,000 repetitions, we

assume that the algorithms have completed the learning process and attained sta-

ble behavior.28 We stop the simulation when this occurs, and in any case after one

billion repetitions.

28Note that even if arg max [Qi,t(a, s)] does not change, the Q-matrices themselves might keep
changing. An alternative standard of convergence would require that the entries of Q-matrices not
change by more than some x% for a certain number of periods.
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4.4. Outcomes

For each set of parameters, an “experiment.” consists of 1,000 sessions. In each

session, agents play against the same opponents for a large number of periods: up

to a billion, or until convergence as defined above.

We can observe all variables of interest (prices, profits, market shares, etc), but we

often elect to concentrate on one economic indicator, namely average profit gain ∆,

defined as:

(9) ∆ ≡ π − πN

πM − πN
,

where πN is the per-firm profit in the Bertrand-Nash static equilibrium, πM is the

profit under full collusion (monopoly), and π is the average profit in the last 25,000

repetitions. Thus, ∆ = 0 corresponds to the competitive outcome and ∆ = 1 to the

perfectly collusive outcome. The main reason for focusing on ∆ is that this index

can be compared directly across different economic settings.

For sessions that converge, we take the outcome to be the average for the last

25,000 repetitions.29 As discussed, we focus on long-run outcomes since in practice

the algorithms are trained off-line before being put to work. In each experiment, we

then calculate the mean and standard error for the 1,000 sessions.

5. RESULTS

Here the baseline economic environment consists of a symmetric duopoly (n = 2)

with ci = 1, ai = 2, a0 = 1, µ = 1
2
, δ = 0.95 and a one-period memory (k =

1). Holding this environment constant, we vary the learning and experimentation

parameters α and β, which for now are taken to be the same for both competing

algorithms. In the next section, we run extensive comparative statics on the economic

parameters, including length of memory. But it is worth noting at the outset that the

assumption of a one-period memory is less restrictive than it might seem, because,

as is noted by Barlo et al. (2016), the richness of the state space may substitute for

the length of the memory. Even with k = 1, the algorithms can effectively replicate

strategies that, strictly speaking, would require a longer memory.

29Since the algorithms’ asymptotic behavior is very stable, as we shall see below, we could
actually average over a much shorter sub-period.
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To illustrate, consider the simple case of a stage game with only two feasible actions,

of the prisoner dilemma type. With m = 2, there are four possible states, namely

(with obvious notation) CC, CD, DC and DD. In this setting, cooperating in state

CC and defecting in all other states is a strategy whose incentive compatibility

constraint is exactly the same as that of a true grim-trigger strategy, which in

principle requires an infinitely long memory. Likewise, cooperating in states CC

and DD and defecting otherwise has the same incentive compatibility constraint

as a “one-period punishment” strategy. Loosely speaking, a unilateral defection is

interpreted as a genuine deviation, which as such is punished. In contrast, joint

defection is interpreted as punishment for a previous deviation and is accordingly

followed by return to cooperation.30

When the state and action spaces are richer, it is possible to mimic more complex

strategies as well. In fact, we find that our algorithms are able to learn punishment

strategies that have finite but long duration, with a slow return to the pre-deviation

prices.

5.1. Learning and experimentation

The learning parameter α ranges from 0 to 1. Generally speaking, extreme values of

α tend to disrupt learning: when α = 0, the algorithm does not learn at all; when

α = 1, it immediately forgets what it has learned in the past. So we expect learning

to be most effective for intermediate values of α.

As for the experimentation parameter β, the trade-off is as follows. On the one hand,

the algorithms need to explore extensively, as the only way to learn is multiple visits

to every state-action cell (of which there are 3375 in our baseline experiments with

n = 2, m = 15 and k = 1, and many more in more complex environments). On the

other hand, in the short run exploration is costly. Here we abstract from this cost

to consider only long-run outcomes (i.e., after the convergence of the algorithms).

But exploration entails another cost as well, in that if one algorithm experiments

more extensively, this creates noise in the environment, which makes it harder for

30Grim trigger strategies turn out not to be an effective way for Q-learning algorithms to co-
operate. This is because with experimentation one algorithm would sooner or later defect, and
when this happened both would be trapped in a protracted punishment phase that would last
until further (joint) experimentation drove the firms out of the trap. In fact, cooperation in the
repeated prisoner dilemma is typically achieved by means of one-period punishment strategies.
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the other to learn. This externality means that in principle experimentation may be

excessive even discounting the short-term cost.

Initially, we explore a grid of 50×50 equally spaced values in the intervals α ∈ (0, 1)

and β ∈ (0, 4 × 10−5). While for α we explored the entire unit segment, for β we

discarded a priori values that do not allow for sufficient experimentation. To get

a sense of the pattern implied, when β is at its upper bound, the probability of

choosing an action randomly drops to two thirds after just 10,000 repetitions, and

to under 2% after 100,000 repetitions. As a result, many of the cells in the matrix,

which corresponds to prices perceived initially as sub-optimal, would be visited no

more than 4 or 5 times in a session.31 This seems barely sufficient to guarantee

decent learning.

5.2. Convergence

In spite of the absence of theoretical guarantees, in more than 99.9 % of the sessions

we have obtained convergence by our definition.

Typically a great many repetitions are needed for convergence. For example, with

α = 1
2

and β = 2 × 10−5 (the mid-point of our grid) convergence is achieved on

average after 500,000 periods, for the simple reason that With that value of β, the

probability of choosing an action randomly is still 14% after 100,000 repetitions. If

the rival is experimenting at this rate, the environment is still too non-stationary

for the algorithm to converge. In practice, convergence is achieved only when ex-

perimentation is nearly terminated. The long time to convergence is not surprising

given the way the algorithms learn, i.e. mechanically but persistently. For our pur-

poses, however, this is not a problem, as the algorithms are supposed to be trained

off-line.32

31If the probability of choosing randomly were always equal to 1, each state-action cell would
have been visited just 3 times after the first 10,000 repetitions. But in fact at that point ε would
already be in the range of 2/3, meaning that cells that correspond to currently sub-optimal prices
would be visited on average less than twice in all subsequent repetitions.

32From this viewpoint, convergence is actually quite fast, requiring on average less than a minute
of CPU time, compared with several weeks for the algorithm that beat humans at Go: see Silver
et al. (2017).
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5.3. Consistency

Outcomes are quite stable across sessions. This is not a foregone conclusion, given

that learning requires extensive experimentation which, being random, might well

create considerable variation. Yet the standard error of the profit gain is typically

less than 1 percentage point. Another sign of the consistency of the learning process

is that the two algorithms, which in the baseline model are ex-ante symmetric,

perform in a very similar manner: the difference between the two firms in profit gain

is never statistically significant. This suggests that what the algorithms eventually

do is not casual.

These results do not depend on the averaging across a large number of repetitions

(25,000). In fact, upon convergence prices are quite stable. In almost half the sessions

both algorithms keep charging the same price period after period. The other sessions

display price cycles, but more than three quarters of them have a period of two, and

all involve adjacent prices. We interpret these cycles not as Edgeworth cycles but

rather as an artifact of our discretization, with actual prices orbiting around constant

targets.33

5.4. Equilibrium play

Even if the algorithms learn to behave consistently, this might not ensure that they

eventually play an optimal strategy. Again, this is guaranteed theoretically for single-

agent decision making but not when different algorithms are involved. In this case,

if both algorithms converged to an optimal strategy in the presence of the rival, they

would converge to a Nash equilibrium of the repeated game with bounded recall.

Although not guaranteed ex ante, this property can be verified ex post, but to do

so we cannot rely on a complete characterization of the set of Nash equilibria,

which is totally unmanageable.34 Instead, we perform a direct check of whether an

algorithm’s strategy is a best response to the one the rival has converged to. If not,

we then calculate the distance from best response.35 This check can be performed

33In theory the algorithms might also learn to split the market dynamically by taking turns, but
apparently they do not.

34With 15 feasible prices and a one-period memory, there are 225 states, 22515 strategies, and
22530 strategy profiles.

35That is, we compare the actual Q-matrix with the theoretical matrix corresponding to the
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either on path (verifying whether a Nash equilibrium is played), or both on and off

path (verifying subgame perfection).

The extent to which the algorithms converge to a Nash equilibrium depends on

the values of the learning and exploration parameters. Intuitively, learning is more

difficult when experimentation is extensive (β low) and the algorithms quickly forget

what they learned in the past (α high). Even in these cases, however, we observe a

considerable amount of equilibrium play. For example, for α = 0.9 and β = 8×10−6,

(a point in the far south-east of our grid), in about one third of the sessions both

algorithms play a best response to the strategy eventually adopted by the rival. For

the remaining sessions, the observed Q-values differ from those associated with best

response by only 5% on average.

With more persistent learning, equilibrium play becomes prevalent. For example,

when α is lowered to 0.1 with the same level of experimentation, a Nash equilibrium

is attained in 55% of cases, and each algorithm plays an individual best response

more than 60% of the times. Moreover, even when the algorithms do not play best

responses, they come quite close: the potential profit gain from a true best response

is, on average, a mere 1%.36

These numbers suggest that the algorithms do learn to play Nash equilibria. A key

implication is that once the learning process is complete, the algorithms cannot be

exploited, no matter how smart the opponent is.37

Off the equilibrium path, things are somewhat different. Fewer than 2% of the

sessions produce a subgame perfect Nash equilibrium. This should not come as

a surprise, however, as sub-optimal cells are visited only few times. As a result,

the algorithms cannot learn perfectly how to respond off path, especially for states

corresponding to past actions far from the optimal. Still, we document that they are

able to learn quite sophisticated punishment strategies.

rival’s strategy upon convergence.
36That is, excluding the best responses for which the distance is nil. To some extent, equilibrium

play is more common with even more extensive experimentation. For example, with α = 0.1
and β = 2 × 10−7 , the algorithms play a Nash equilibrium 80% of the times. Yet increasing
experimentation even further eventually backfires, reducing the profit gain, probably because of
the exploration externality mentioned above.

37Whether Q-learning algorithms could be exploited during the learning phase, if it were con-
ducted on line, is an interesting and difficult question for future study.
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Figure 1: Average profit gain ∆ for a grid of values of α and β. (Note that β has
been rescaled to vary from 0 to 1.)

5.5. Outcomes

What do the algorithms do once they are fully trained? In this subsection, we show

that they systematically charge supra-competitive prices and earn supra-competitive

profits. In the next subsection we inquire into the strategies that underpin these

collusive-looking outcomes.

The average profit gain ∆ is represented in Figure 1 as a function of α and β. In

the interval we have considered, ∆ ranges from a minimum of 40% to a maximum

of 99%. Although the profit gain is sensitive to the learning and experimentation

parameters, non-competitive outcomes are quite common, not obtained at just a

few selected points.

Generally speaking, the profit gain tends to be relatively small when there is little

exploration, but it is actually smallest when exploration is extensive and α is very

high. For this range of parameters, the algorithms explore widely but forget rapidly.

This does not look like a particularly effective way of learning, and in fact it leads to
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Figure 2: Histogram of states visited in the last 25,000 iterations pooling all data
from 1000 sessions with α = 0.05, β = 8× 10−6. Green=(pM , pM), red=(pN , pN).

relatively limited equilibrium play, as we have already observed. Yet not even this

stolid approach leads to cutthroat competition.

A more sensible method is to combine a moderate rate of learning with extensive

exploration. In this case, we find not only more equilibrium play but also higher

profits. For example, when α ranges between 0 and 0.2, and β between 0 and 2×10−5,

the average profit gain is systematically around 80% or more.

Given the consistency across sessions documented above, the observed values of ∆

arise not because the algorithms sometimes learn to collude and sometimes do not,

but rather because they learn systematically to collude partially. This is confirmed

by examining the prices that they eventually charge. Figure 2 shows the relative

frequency of the different price combinations for an experiment that is representative

of the entire batch. Prices are rarely as high as under monopoly but are almost

always higher than in the Bertrand-Nash equilibrium. Price dispersion is low, and

firms tend to price symmetrically.

In sum, our algorithms consistently and symmetrically charge supra-competitive

prices, obtaining a sizable profit gain.
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5.6. Strategies

Let us now turn to the issue of what strategies underpin these documented non-

competitive outcomes. The key question is whether the high prices are the result of

the algorithms’ failure to learn the static Bertrand-Nash equilibrium or of genuine

collusion. The policy implications would be radically different: the former means

that the algorithms are not smart enough, the latter that they are already, in a

sense, “too smart.” As AI technology advances, in the former case the problem is

likely to fade away; in the latter, to worsen.

At this point, it may be useful to spell out exactly what we mean by collusion.

Following Harrington (2017), we define collusion as “a situation in which firms use a

reward-punishment scheme to coordinate their behavior for the purpose of producing

a supra-competitive outcome.” That is, what is crucial is not the level of profits as

such but the way the supra-competitive result is achieved. Even extremely high profit

levels may be regarded as collusive only insofar as deviations that are profitable in

the short run would trigger a punishment.

We have already noted that the average profit gain seems to increase with the

amount of equilibrium play, which itself suggests that Q-learning algorithms actually

do learn to collude. Here we set forth two additional, perhaps even more compelling

arguments. First, in economic environments where collusion cannot arise in equilib-

rium, we find that the algorithms learn instead to set competitive prices. Second,

going back to settings where collusion is possible, we perform the following test: we

exogenously force one player to defect by manually lowering its price for some time

and observe how the algorithms react. In fact, they punish such defections, with a

characteristic pattern: the punishment is proportional to the extent of the deviation

and of finite duration, with a gradual return to the pre-deviation prices. This is

perhaps the most direct possible evidence of collusive behavior where collusion is

tacit.

5.6.1. Competitive environments

In certain environments, collusion is impossible by default; in others, it can never

arise in equilibrium. If the supra-competitive prices that we find were the result of

erratic choices, or of something other than collusion, then they should also be ex-
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pected in settings where collusion is impossible. In particular, collusion is impossible

when k = 0 (the algorithms have no memory), and it cannot arise in equilibrium

when δ = 0 (the immediate gain from defection cannot be outweighed by the loss

due to future punishments). As noted in Section 3, the literature has indeed found

supra-competitive prices even in these settings, which poses the question of how to

interpret the findings in economic terms.

By way of contrast, in both of the above cases we find profit gains on the order of

10% to 20%. This means that the algorithms do learn to charge the static Bertrand-

Nash prices when this is the only equilibrium of the game. If they do not play the

competitive equilibrium when other equilibria exist, it must be because they have

learned more sophisticated strategies.

5.6.2. Deviations and punishments

To look into how these strategies are structured, we have designed a specific exercise.

At the end of a session we let the agents play for a number of periods according

to the learnt strategies. Then we step in and manually override one agent’s choice,

forcing it to defect. We impose not only defections lasting for a single period but also

defections lasting several periods; and defections both to the static best-response and

to smaller price cuts. For all of these cases, we then examine the reaction of both

agents in the subsequent periods. In a word, we derive “impulse-response” functions.

Figure 3 shows the average of 1,000 impulse-response functions derived from this

exercise for all the sessions of one experiment (α = 0.05, β = 8 × 10−6, δ = 0.95)

that is representative of the region in the grid where collusion is most pervasive. It

shows the average prices chosen by agents τ periods after the deviation. The bottom

plot simply provides greater detail zooming in around the shock. Figure 3 depicts

the case of a one-period deviation to the static best-response to the pre-deviation

price.

Clearly, the exogenous deviation gets punished, but the punishment is not as harsh

as it could be (e.g., a reversion to the static Bertrand-Nash equilibrium), and it is

only temporary: in the subsequent periods, the algorithms gradually return to their

pre-deviation behavior.38 We have also considered smaller exogenous price cuts:

38In fact, on average prices stabilize on a new level that is slightly lower than the pre-deviation
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Figure 3: Price Impulse response, α = 0.05, β = 8 × 10−6, δ = 0.95. The top plot
zooms out around the shock to show pre- and post-deviations levels.
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Figure 4: Price Impulse response, 5-period deviation, α = 0.05, β = 8 × 10−6, δ =
0.95.

when the deviation is milder, the punishment tends to be less harsh.

On the face of it, one may wonder whether the algorithms are effectively punishing

the deviation, or whether instead the price cuts simply serve to regain market share.

Looking only at the non-deviating firm’s behavior, in fact, it is hard to tell these

alternative explanations apart. But if you focus on the behavior of the deviating

firm, the difference becomes perfectly clear. Given that in the deviation period (i.e.,

period τ = 1) the rival has stuck to its old price, in period τ = 2 the deviating

algorithm, which meanwhile has regained control of the pricing, has no reason to

cut its price endogenously unless it is taking part in the punishment itself. If its only

concern were to maintain its market share, the deviating algorithm would cut its

price only in period τ = 3, i.e. after observing the rival’s price reduction in period

τ = 2. Actually, however, in period τ = 2 the deviating algorithm prices almost

exactly the same as the other. This clearly shows that the deviating algorithm

is responding not only to its rival’s but also to its own action. Such self-reactive

behavior is often crucial to achieve genuine collusion,39 and it would be difficult to

rationalize otherwise.

one.
39See for instance Maskin and Tirole (1982).
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Figure 5: Impulse response of Profit gain ∆ for α = 0.05, β = 8× 10−6, δ = 0.95

Figure 4 illustrates the case of a 5-period deviation. The punishment gets a bit

harsher after the second deviation but then stabilizes. In any case, the non-deviating

firm stands ready to forgive: as soon as the defection ends, there is a gradual return

to the original prices, on a pattern similar to the one-period deviation.

Going back to that case, Figure 5 shows the evolution of profits for a one-period

deviation. Clearly, the punishment makes the deviation unprofitable. Agent 2’s re-

taliation wipes out agent 1’s profit gain already in the very next period.

Summarizing, we find clear evidence of collusive behavior: the supra-competitive

profits are supported by off-path punishments. These punishment have a finite du-

ration, with a slow return to the pre-deviation prices.

6. ROBUSTNESS

In this section, we hold the learning and experimentation parameters constant and

consider a number of economic factors that may affect firms’ ability to sustain a

tacit collusive agreement. Specifically, we assume α = 0.05 and β = 8 × 10−6. As

a benchmark, for these parameter values the average profit gain in the baseline

experiment is ∆ = 80%.
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We first consider some factors that might disrupt coordination, showing that al-

gorithmic collusion is in fact quite robust. We then deal with other, more neutral

factors whose impact is not clear a priori.

6.1. Number of players

Theory predicts that collusion is harder to sustain when the market is more frag-

mented. This is indeed one reason why antitrust authorities regulate mergers: apart

from the unilateral effects, the concern is that more concentrated markets may be

conducive to tacit collusion.

The experimental literature provides some support for this thesis, showing that

without explicit communication it is very difficult for more than two agents to

collude. With three agents, prices are typically pretty close to the static Bertrand-

Nash equilibrium, and with four agents or more they may even be lower.40

In this respect, Q-learning algorithms would appear to be different. In simulations

with three firms, the average profit gain ∆ decreases only marginally, from 80% to

74%. With four agents, the profit gain is still a substantial 70%. The fact that ∆

decreases accords with the theoretical predictions; the fact that it decreases so slowly

seems to be a peculiar and somewhat worrying property of pricing algorithms.

What changes when the number of firms increases is the structure of the punish-

ment. Figure 6 shows the impulse-response function for the case of three firms. The

algorithms no longer return to the pre-deviation prices but settle quickly to a price

level intermediate between the old and the deviation prices.

One possible explanation is that the enlargement of the state space impedes learning.

Indeed, moving from n = 2 to n = 3 or n = 4 drastically enlarges the Q-matrix, from

3,375 to around 50,000 or over 750,000 entries. Since the amount of exploration is

held constant, the increase in the size of the matrix makes learning off the equilibrium

path much more incomplete.41 However, we still have punishments, and in fact the

punishment is harsher than in the two-firms case.

40See for instance Huck et al. (2004). Cooper and Khun (2014) stress the importance of com-
munication to sustain collusion in the lab.

41It seems that for Q-matrices of this size some kind of Q-function approximation may yield
more reliable results. We come back to this issue in the concluding section.
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Figure 6: Price Impulse response with 3 players, α = 0.05, β = 8× 10−6, δ = 0.95.

6.2. Asymmetric firms

The conventional wisdom has it that asymmetry impedes collusion. For one thing,

asymmetric firms have different incentive compatibility constraints. This mechanical

effect by itself tends to restrict the set of parameter values where the constraints are

satisfied and thus supports the assumption that collusion is less likely when firms

are asymmetric. More to the point, firms contemplating a tacit collusive agreement

must solve a two-fold problem of coordination: they must choose both the average

price level, which determines the aggregate profit, and the relative prices of the two

firms, which determine how the total profit is split. Achieving coordination on both

issues without explicit communication is generally regarded as a daunting task.

To see how Q-learning algorithms cope with these problems, we considered both

cost and demand asymmetries of different degrees. The results are not sensitive to

the source of the asymmetry, so Table 1 reports only the case of cost asymmetry.
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c2 1 0.875 0.750 0.625 0.5 0.25

2’s market share 50% 55% 60% 64% 67% 73%

∆ 80% 78% 74% 69% 65% 54%
π1/πN1
π2/πN2

1 1.001 1.003 1.006 1.008 1.016

Table 1: Cost asymmetry (c1 = 1).

As the table shows, asymmetry does reduce the average profit gain, but only to

a limited extent. For example, in a variant of the baseline model where the more

efficient firm (firm 2) has a 12.5% cost advantage (that is, c1 = 1 and c2 = 0.875),

the average profit gain falls from 80% to 78%. With a 25% cost advantage, the

average profit gain is 74%, and even with a 50% advantage it is still 65%.

In part the decrease in the average profit gain is simply a consequence of the absence

of side payments. To see why this is so, consider how the two algorithms divide the

aggregate profit. Remarkably, the ratio πi
πNi

is roughly the same for both firms, irre-

spective of the degree of asymmetry. That is, the gain from collusion is split among

the firms roughly proportionally to their respective profit shares in the competitive

equilibrium.

This “equitable” division is striking, as the notion of fairness is clearly not incor-

porated into the algorithms, but just as clearly does have an impact on the joint

profit level. The maximization of joint profit indeed requires that the more efficient

firm expand and the less efficient one contract relative to the Bertrand-Nash equi-

librium.42 However, this would produce a division strongly biased in favor of the

more efficient firm. Conversely, a proportional division of the gain entails a cost in

terms of the total profit.

This by itself explains why the average profit gain decreases as the degree of asym-

metry increases. In other words, it seems that asymmetry doesn’t actually make the

coordination problem tougher for the algorithms but simply leads them to coordi-

nate on a solution that does not maximize total profit.

42This effect may be so pronounced that the less efficient firm may actually get less profit under
joint profit maximization than in the Bertrand-Nash equilibrium. This is why the level of the
individual profit gains ∆i given asymmetry needs to be interpreted with caution.
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Figure 7: Average Profit Gain ∆ for α = 0.05, β = 8× 10−6

6.3. Patience

The literature on infinitely repeated games has focused mostly on the discount factor

as a critical factor for cooperation. The consensus is that lower discount factors, i.e.

less patient players or else less frequent interaction, impede collusion.43 The initial

concern over algorithmic pricing was simply that algorithms may adjust the price

much more quickly than humans, thereby increasing the frequency of interaction

and hence the implicit discount factor δ.

Figure 7 shows how the average profit gain depends on δ. The theoretical postulate

is largely supported by our simulations: collusion increases smoothly as the discount

factor rises.

Given the frequency with which algorithms can adjust prices (often a matter of

minutes), the baseline value of δ, i.e. δ = 0.95, may actually seem quite low. For any

realistic value of the interest rate, with algorithmic pricing δ is bound to be so close

to 1 that impatience is no longer a factor that could actually impede collusion.44

43One exception is Sannikov and Skrzypacz (2007), who however posit a setting with imperfect
monitoring. With more frequent interaction, firms respond more quickly to noise signals, and this
may disrupt collusion.

44When δ gets very close to 1 Q-learning ceases to work well: we observe less convergence, less



AI, ALGORITHMIC PRICING AND COLLUSION 35

6.4. Stochastic demand

In the baseline model, the economic environment is deterministic. The only source

of uncertainty for a player is rivals’ experimenting and learning. It is often argued

that tacit collusion is harder to sustain when market conditions vary stochastically.

To assess the algorithms’ ability to cope with uncertainty, we let the aggregate

demand parameter a0 vary stochastically. Specifically, a0 is assumed to be an i.i.d.

binary random variable that takes two values, aH0 = (1 + x) and aL0 = (1− x) with

equal probability. This corresponds to positive and negative demand shocks of x%

of the average demand. The shocks are purely idiosyncratic and have no persistency

– perhaps the most challenging situation for the algorithms.

When x = 5%, the average profit gain under uncertainty falls from 80% to 78%;

and even when x = 10% (so demand is 20% higher in good than in bad states) the

average profit gain is still 72%. Apparently, then, demand variability does hinder

collusion among firms, as one would have expected, but it does not eliminate it.

6.5. Variable market structure

In our baseline experiments, all firms are active at all times. To analyze the impact

of a variable market structure, we repeat the exercise with one firm (the “outsider”)

entering and exiting the market in random fashion. This exercise is performed both

for the case of two players (the market thus alternating between monopoly and

duopoly) and of three players (duopoly and triopoly).

We take entry and exit to be serially correlated. Formally, let It be an indicator

function equal to 1 if the outsider is in the market in period t and to 0 otherwise.

We set

(10) prob{It = 1|It−1 = 0} = prob{It = 0|It−1 = 1} = ρ.

This implies that the unconditional probability of the outsider’s being in at some

random time is 50%. Equivalently, the market is a duopoly half the time on average.

equilibrium play, and also smaller profit gains. This failure of Q-learning algorithms for δ ≈ 1 is
well documented in the computer science literature. The problem seems to be that in the learning
equation (4) the past Q-value is weighted too heavily by comparison compared with the new
information πt. This is so even if α is taken to be close to 1.



36 E. CALVANO, G. CALZOLARI, V. DENICOLÒ, S. PASTORELLO

The degree of serial correlation ρ is set at 99%, so that when the outsider enters,

it stays in the market for an average of 100 periods. Since in marketplaces where

algorithmic pricing is commonly adopted periods can be very short, this level of

persistency can be considered low.45 We accordingly also run simulations setting

this probability at 99.9%, meaning that when the outsider enters, it stays in for a

longer period.

The state s now includes the prices of the previous period if all firms were active,

or the prices of the active firms and the fact that the outsider was not active.

We find that the average profit gain can be even greater than with a fixed number

of firms. In the duopoly/triopoly model, it is 76% when ρ = 0.99, and 86% when

ρ = 0.999. By way of comparison, the average of the profit gain under duopoly is

80% and under triopoly it is 77%.

Figure 8 shows the impulse-response function for the case when the market alternates

between duopoly and triopoly with ρ = 0.99. Punishment strategies closely resemble

those obtained in the case of two firms. It seems that in periods of duopoly the two

active firms learn the sophisticated punishment strategy with a reversion to the

pre-deviation prices and that the third firm, when it enters, somehow manages to

imitate its rivals’ behavior. This learning pattern also emerges in a related extension

(see subsection 6.10 below).

6.6. Memory

As we have seen, the assumption of one-period memory is less restrictive than it

might seem, but at all events we have also run experiments with two-period memory

(k = 2). One might presume that longer memory allows more flexible strategies

and hence facilitates collusion, but in this experiment, perhaps surprisingly, average

profit gain actually decreases, from 80% to 76%. The effect is small, to be sure, but

its sign is the opposite of what one would perhaps expect.

One possible explanation is that longer memory makes learning harder by increasing

the size of the Q-matrix, as is confirmed by the fact that the punishment strategies

now become similar to those with three or four firms.46

45If a period were a quarter of an hour, say, then 100 periods would be barely one day.
46The matrix is exactly the same size with two firms and a two-period memory as with four
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Figure 8: Price Impulse response with alternating entry and exit of a third player,
α = 0.05, β = 8× 10−6, δ = 0.95.

6.7. Product substitutability

In the logit model, a decrease in µ means that individual demand becomes more

price-sensitive. That is, the reduction in µ captures an increase in product substi-

tutability. In principle, the impact of changes in substitutability on the likelihood

of collusion is ambiguous: on the one hand, when products are more substitutable

the gain from deviation increases, but at the same time punishment can be harsher.

This ambiguity is confirmed by the theoretical literature.47

In our setting, we test the consequences of lowering parameter µ from 0.5 (baseline)

to 0.25 and to 0.1. The effect on average profit gain is not statistically significant:

∆ remains more or less constant around 80%. This outcome is consistent with the

theoretical predictions.

firms and a one-period memory.
47For example, Tyagi (1999) shows that greater substitutability hinders collusion when demand

is linear or concave but may either hinder or facilitate it when demand is convex.
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6.8. Linear demand

We repeated the analysis for the case of duopoly with linear demand

(11) qit = 1− pit − γpjt,

for various values of the horizontal differentiation parameter γ. We find average

profit gains between 75% and 80%, and impulse-response functions almost identical

to those observed with logit demand. Other alternative demands could also be tested,

of course, but it would seem that the results are robust to the demand specification.

6.9. Finer discretization

As Section 3 notes, one reason why the repeated prisoner dilemma may be a mis-

leading approach to the analysis of collusion is that coordination is much easier

when there are only few possible actions. With two actions only, for instance, there

is basically only one way to cooperate. As the number of actions and hence strate-

gies increases, the strategy on which the players should coordinate is no longer

self-evident. Failing explicit communication, this could engender misunderstandings

and prevent cooperation.

To determine whether a richer strategy space facilitates or impedes cooperation, we

run experiments with 50 or 100 feasible prices, not just 15. The average profit gain

decreases slightly, but with m = 100 it is still a substantial 76%. We conjecture

that ∆ decreases because a larger number of actions and states necessitates more

exploration to achieve the same amount of learning as in baseline model.48

We have also considered the case of parameter ξ higher than 10%, but greater

flexibility in price setting - below Bertrand-Nash or above monopoly - turns out to

be immaterial. This is not surprising, given that the players never converge on these

very low or very high prices.

48This is consistent with the fact that the punishments (i.e. impulse responses) become similar
to the other cases with larger Q matrices, that is when there are more firms and when the memory
is longer.
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6.10. Asymmetric learning

Going back to the baseline environment, we consider the case in which the two

algorithms have different learning rates α, or different intensity of experimentation.

Collusion appears to be robust to these changes. For example, when α2 is set at 0.025

or 0.1 with α1 constant at 0.05, the average profit gain is 75% or 80%, respectively.

In both cases, the firm with lower α gains more, suggesting that setting α = 0.05

still gives too much weight to new information.

We also halved and doubled the value of β for one algorithm only, keeping the other

fixed at β = 8× 10−6. In the former case, the value of ∆ stays practically constant,

in the latter it comes marginally down to 78%. In both cases, the algorithm that

explores less performs slightly better than the rival.

Finally, we consider a case in which when two algorithms have completed their

learning a third firm enters the market. Naturally, the new entrant has to experiment

and learn, while the incumbents cease to experiment but may keep adjusting their

Q-matrices (because they continue to learn). Now the average profit gain is 74%,

exactly the same as in the model with three firms all learning simultaneously. What

is more, the entrant’s gain is similar to the incumbents’. It seems the entrant cannot

exploit the incumbents even if they have stopped experimenting.

These highly preliminary, incomplete results for situations in which different al-

gorithms follow different learning and exploration strategies suggest that diversity

among the algorithms does not significantly affect the degree of collusion.

7. CONCLUSION

We have shown that in stationary environments Q-learning pricing algorithms sys-

tematically learn to collude. Collusion tends to be partial and is sustained by pun-

ishment in case of defection. The punishment is proportional to the extent of the

deviation and is of finite duration, with a gradual return to pre-deviation prices.

The algorithms learn to play these strategies by trial and error, requiring no prior

knowledge of the environment in which they operate. They leave no trace whatever

of concerted action: they do not communicate with one another, nor have they been

designed or instructed to collude.

From the standpoint of competition policy, these findings should clearly be wor-
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rying. They suggest that with the advent of Artificial Intelligence and algorithmic

pricing tacit collusion may become more prevalent, heightening the risk that toler-

ant antitrust policy may produce too many false negatives and so possibly calling

for policy adjustments. Before altering policy, however, more research is needed.

We conclude with a brief discussion of three major unsettled issues. The first is

the complexity of the economic environment. We have considered a good many

extensions of the baseline model, but all separately, the model thus remaining quite

highly stylized. To produce a more realistic setting for analysis, one might well

posit a model with several firms, longer memory, stochastic demand and possibly

also structural breaks. Analyzing such a model would not appear to be unfeasible:

even in the more complex settings set out in Section 6, for instance, our algorithms

achieve convergence in a matter of minutes, which suggests that we are still far

from having exhausted their learning capacity.49 In order to learn to price in more

complex environments, however, tabular Q-learning algorithms need to experiment

much more extensively than we have allowed them to do. This may result in a failure

to converge, as one algorithm’s experimentation may disrupt others’ learning. It

seems therefore that more complex environments should be analyzed for algorithms

whose learning is more efficient than tabular Q-learning - say, with deep learning

algorithms.

This leads to the second, related issue. Not only can deep learning manage more

complex environments, it can also speed the learning process. This is important,

because the training of the algorithms cannot always be conducted entirely off-line,

and in the short run experimentation is costly. On-line learning seems necessary,

in particular, when the economic environment is changeable, or when the training

environment does not exactly reflect the reality of the markets where the algorithms

are eventually deployed. As noted, these first two issues can be addressed by using

algorithms that are smarter than tabular Q-learners. The consensus choice for this

purpose, at the present, seems to be deep learning algorithms. Thus extending our

analysis to this type of algorithm is an important task for future work.

A third, more general issue is the external validity of the experimental analysis.

While Q-learning is natural, common and well understood, there are also other

49It bears repeating that training our algorithms takes much less time than training algorithms
designed to solve complex tasks.
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forms of Reinforcement Learning. Moreover, Q-learning algorithms themselves come

in different varieties, with alternative exploration strategies and estimation methods.

We do not know exactly what algorithms are used in practice, and even if we knew

what firms do now, things are likely to change rapidly.

One possible approach would be systematic replication of our analysis on other

existing pricing algorithms, as well as on those that will be introduced in the fu-

ture. Harrington (2017) advocates precisely this kind of regulatory approach to

algorithmic pricing. He envisions a “sandbox” regulatory model similar to that cur-

rently used for authorizing new drugs, in which new algorithms would be tested

for collusion-proneness and rejected if they display excessive propensity to collude.

From this perspective, our work may be seen as part of a preliminary effort to de-

termine whether such pervasive regulation is really necessary, and to develop the

methods most suitable for such tests.

More broadly, however, we feel that there may be space for theoretical analysis that

abstracts from the details of particular algorithms and essentially considers their

common architecture. Perhaps the most striking feature of our Q-learning algorithms

is that they do not behave erratically but appear to follow very systematic patterns.

Experimental analysis may help reveal these patterns, but ultimately theory will be

needed in order to provide deeper explanations.
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